Molecular Rotations of Glucides in Relation to their Structures. IX¹⁾. The Value of the ζ-Coefficient of the Hydroxyl Group in Hydro-p-xylal

By Shukichi Yamana

(Received March 19, 1962)

The value of the ζ -coefficient of the hydroxyl group, ζ_{OH} , in hydro-D-xylal has been calculated. The unit groups in the molecule and its $[M]_{2}^{20}(W)$ are shown in Table I (Fig. 1).

Name TABLE I Unit groups $[M]_D^{20}(W)$ Hydro-D-xylal $[(OH)^{3\beta}, (OH)^{4\alpha}, Ring^{0 2}]$ -53.0^{3}

Fig. 1. Perspective drawing of the molecular model of hydro-p-xylal.

In the aldopyranose-ring, $R^{0\ 2}$, of hydro-Dxylal, the O atom is combined with two methylene radicals, (i. e. $-C^1H_2$ - and $-C^5H_2$ -). Therefore, the shape of R^0 is considered to be almost symmetrical. Therefore, in order to simplify the calculations, an ideal model of glucide⁴ is used here. By using the PM-method⁶,

[M] $_{\text{D}}^{20}$ (W) of hydro-D-xylal, $-53.0 \equiv \sum [\mu]_{\text{D obs}}^{20}$ of hydro-D-xylal $= (3\beta) \,\text{A} \,(4\alpha) + (3\beta) \,\text{AR}^{0} + (4\alpha) \,\text{AR}^{0}$ (1) As R⁰ is symmetrical,

$$(3\beta) \mathbf{X} \mathbf{R}^0 = \mathbf{0} \tag{2}$$

On the other hand, as the orientation of 4α is almost parallel with the average plane of \mathbb{R}^0 (equatorial bond), it is expected that the absolute value of $(4\alpha) \, \mathrm{AR}^0$ will be very small⁷⁾. Therefore, for the sake of simplicity of calculation, the next equation is available;

$$(4\alpha) \, \mathsf{L} \, \mathsf{R}^{\,0} \simeq 0 \tag{3}$$

Combining Eqs. 1, 2 and 3,

$$-53.0 \simeq (3\beta) \,\mathrm{A} \,(4\alpha) \tag{4}$$

However,

(3
$$\beta$$
) X (4 α) = {(3 β) × (4 α)} ζ^{2}_{OH} {(n^{2} +2)/3} 9)
={[μ] $_{D}^{20}$ calcd between (OH) $^{3}\beta$ and (OH) $^{4}\alpha$ }
×{3/(n^{2} +2)} ζ^{2}_{OH} {(n^{2} +2)/3} 11)
= $-A\zeta^{2}_{OH}$ {(n^{2} +2)/3} 12)
= -11.73 ζ^{2}_{OH} {(n^{2} +2)/3} (5)

From Eqs. 4 and 5,

$$-53.0 \simeq -11.73\zeta^{2}_{OH}\{(n^{2}+2)/3\}$$

or

$$\zeta^{2}_{OH} \simeq 4.5183\{3/(n^{2}+2)\}$$

This value is almost equal to the value of ζ^2_{OH} in (-)1/2 cyclohexanediol, which has only two hydroxyl groups in its molecule, $4.1091\{3/(n^2+2)\}^{13}$. This fact may mean that the value of the ζ -coefficient of a unit group is nearly constant, regardless of the kind of ring in the molecule with which it is concerned.

Department of Chemistry Kyoto Gakugei University Fushimi-ku, Kyoto

Part VIII, S. Yamana, This Bulletin, 35, 1269 (1962).
 Ring⁰ (or R⁰) means an aldopyranose-ring which has not any hydrogen bond producing group at its 1- or 5-position.

³⁾ H. G. Fletcher, Jr. and C. S. Hudson, 71, 3682 (1949).
4) This model can be made from the ideal model of polyhydroxycyclohexane by replacing the C⁶-atom of its cyclohexane-ring by the ring-O-atom. (Cf. previous papers^{5,6}). For this model, $[n]_{D}^{20} = \frac{1}{2} \frac{1}{2}$

⁵⁾ S. Yamana, This Bulletin, 30, 207 (1957).

⁶⁾ S. Yamana, ibid., 33, 1741 (1960).

⁷⁾ Concerning the reason for this deduction from the relative geometry of the unit groups, cf. Eq. 1 of a previous paper⁸⁾.

⁸⁾ S. Yamana, This Bulletin, 30, 203 (1957).

⁹⁾ Equation 32 of a previous paper¹⁰⁾ is used.

¹⁰⁾ S. Yamana, This Bulletin, 31, 558 (1958).
11) Cf. footnote *10 of the previous paper⁵³.

¹²⁾ Table II of the previous paper⁶⁾ is used.

¹³⁾ Cf. footnote 4, S. Yamana, This Bulletin, 34, 1414 (1961).